Global solution of optimization problems with signomial parts
نویسندگان
چکیده
In this paper a new approach for the global solution of nonconvex MINLP (Mixed Integer NonLinear Programming) problems that contain signomial (generalized geometric) expressions is proposed and illustrated. By applying different variable transformation techniques and a discretization scheme a lower bounding convex MINLP problem can be derived. The convexified MINLP problem can be solved with standard methods. The key element in this approach is that all transformations are applied termwise. In this way all convex parts of the problem are left unaffected by the transformations. The method is illustrated by four example problems. c © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Some transformation techniques with applications in global optimization
In this paper some transformation techniques, based on power transformations, are discussed. The techniques can be applied to solve optimization problems including signomial functions to global optimality. Signomial terms can always be convexified and underestimated using power transformations on the individual variables in the terms. However, often not all variables need to be transformed. A m...
متن کاملMulti-item inventory model with probabilistic demand function under permissible delay in payment and fuzzy-stochastic budget constraint: A signomial geometric programming method
This study proposes a new multi-item inventory model with hybrid cost parameters under a fuzzy-stochastic constraint and permissible delay in payment. The price and marketing expenditure dependent stochastic demand and the demand dependent the unit production cost are considered. Shortages are allowed and partially backordered. The main objective of this paper is to determine selling price, mar...
متن کاملGlobal Optimization in Generalized Geometric Programming
A deterministic global optimization algorithm is proposed for locating the global minimum of generalized geometric (signomial) problems (GGP). By utilizing an exponential variable transformation the initial nonconvex problem (GGP) is reduced to a (DC) programming problem where both the constraints and the objective are decomposed into the diierence of two convex functions. A convex relaxation o...
متن کاملαBB: A global optimization method for general constrained nonconvex problems
A branch and bound global optimization method, BB, for general continuous optimization problems involving nonconvexities in the objective function and/or constraints is presented. The nonconvexities are categorized as being either of special structure or generic. A convex relaxation of the original nonconvex problem is obtained by (i) replacing all nonconvex terms of special structure (i.e. bil...
متن کاملOn the Relationship between Power and Exponential Transformations for Positive Signomial Functions
Global optimization of mixed integer nonlinear programming (MINLP) problems containing signomial terms is in many cases a difficult task, and many different approaches to solve these problems have been devised. In Westerlund (2005) a method where a relaxed convex relaxation of the original problem is obtained by approximating single-variable transformations with piecewise linear functions (PLFs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Optimization
دوره 5 شماره
صفحات -
تاریخ انتشار 2008